Tuesday, November 12, 2024
HomeCVE/vulnerabilityFGVulDet - New Vulnerability Detector to Analyze Source Code

FGVulDet – New Vulnerability Detector to Analyze Source Code

Published on

Malware protection

Detecting source code vulnerabilities aims to protect software systems from attacks by identifying inherent vulnerabilities. 

Prior studies often oversimplify the problem into binary classification tasks, which poses challenges for deep learning models to effectively learn diverse vulnerability characteristics. 

To address this, the following cybersecurity analysts introduced FGVulDet, a fine-grained vulnerability detector that employs multiple classifiers to discern various vulnerability types:-

- Advertisement - SIEM as a Service
  • Shangqing Liu from Nanyang Technological University 
  • Wei Ma from Nanyang Technological University
  • Jian Wang from Nanyang Technological University
  • Xiaofei Xie from Singapore Management University
  • Ruitao Feng from Singapore Management University
  • Yang Liu from Nanyang Technological University

FGVulDet Vulnerability Detector

Each classifier learns type-specific semantics, and researchers propose a novel data augmentation technique to enhance diversity in the training dataset. 

Inspired by graph neural networks, FGVulDet utilizes an edge-aware GGNN to capture program semantics from a large-scale GitHub dataset encompassing five vulnerability types.

Five Vulnerability Types

Previous works have simplified the identification of source code vulnerability into a binary classification problem where all defect-prone functions are labeled as 1.

This approach lacks accuracy because it does not consider types of particular vulnerabilities.

However, in contrast to this, the researchers’ approach focuses on fine-grained vulnerability identification and aims to learn prediction functions for distinct vulnerability types within a dataset. 

Each function is categorized based on its vulnerability type to predict its vulnerability status.

Their framework has three core parts:-

  • Data Collection
  • Vulnerability-preserving Data Augmentation
  • Edge-aware GGNN

On the other hand, researchers train multiple binary classifiers for different vulnerability types and aggregate their predictions through voting during the prediction phase.

This task is difficult as obtaining high-quality datasets covering a broad range of vulnerabilities requires specialist knowledge.

The framework of FGVulDet (Source – Arxiv)

GGNN is a very famous source code modeling approach that is limited to node representations without considering the edge information.

In this case, it’s aimed at proposing an edge-sensitive GGNN that can effectively use edge semantics in vulnerability detection.

Each type of vulnerability has its own binary classifier, which is trained by using datasets of both vulnerable and non-vulnerable functions.

The final prediction is made through majority voting across all the classifiers.

Since the researchers’ dataset includes common vulnerabilities so, it can be extended for detecting others as well.

On the other hand, FGVulDet employs multiple classifiers and a novel data augmentation technique for effective fine-grained vulnerability detection.

Looking to Safeguard Your Company from Advanced Cyber Threats? Deploy TrustNet to Your Radar ASAP.

Tushar Subhra
Tushar Subhra
Tushar is a Cyber security content editor with a passion for creating captivating and informative content. With years of experience under his belt in Cyber Security, he is covering Cyber Security News, technology and other news.

Latest articles

10 Best DNS Management Tools – 2025

Best DNS Management Tools play a crucial role in efficiently managing domain names and...

Sweet Security Announces Availability of its Cloud Native Detection & Response Platform on the AWS Marketplace

Customers can now easily integrate Sweet’s runtime detection and response platform into their AWS...

Researchers Detailed Credential Abuse Cycle

Cybercriminals exploit leaked credentials, obtained through various means, to compromise systems and data, enabling...

New Android Malware SpyAgent Taking Screenshots Of User’s Devices

SpyAgent, a newly discovered Android malware, leverages OCR technology to extract cryptocurrency recovery phrases...

Free Webinar

Protect Websites & APIs from Malware Attack

Malware targeting customer-facing websites and API applications poses significant risks, including compliance violations, defacements, and even blacklisting.

Join us for an insightful webinar featuring Vivek Gopalan, VP of Products at Indusface, as he shares effective strategies for safeguarding websites and APIs against malware.

Discussion points

Scan DOM, internal links, and JavaScript libraries for hidden malware.
Detect website defacements in real time.
Protect your brand by monitoring for potential blacklisting.
Prevent malware from infiltrating your server and cloud infrastructure.

More like this

Researchers Detailed Credential Abuse Cycle

Cybercriminals exploit leaked credentials, obtained through various means, to compromise systems and data, enabling...

New Android Malware SpyAgent Taking Screenshots Of User’s Devices

SpyAgent, a newly discovered Android malware, leverages OCR technology to extract cryptocurrency recovery phrases...

Tor Network Suffers IP Spoofing Attack Via Non-Exit Relays

In late October 2024, a coordinated IP spoofing attack targeted the Tor network, prompting...